
!
SANDIA REPORT
SAND2014-17970
Unlimited Release
Printed September 2014 !!!
Seismic Attenuation Inversion with t*
Using tstarTomog !!
Leiph A. Preston !!!!!
Prepared by  
Sandia National Laboratories  
Albuquerque, New Mexico 87185 and Livermore, California 94550 !
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,  
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's  
National Nuclear Security Administration under contract DE-AC04-94AL85000. !
Approved for public release; further dissemination unlimited. !!!!!!!! !!!!
! !!

!!!!
Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation. !
NOTICE: This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government, nor any agency thereof,
nor any of their employees, nor any of their contractors, subcontractors, or their employees,
make any warranty, express or implied, or assume any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represent that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government, any agency thereof, or any of
their contractors or subcontractors. The views and opinions expressed herein do not
necessarily state or reflect those of the United States Government, any agency thereof, or any
of their contractors. !
Printed in the United States of America. This report has been reproduced directly from the best
available copy. !
Available to DOE and DOE contractors from
 U.S. Department of Energy
 Office of Scientific and Technical Information
 P.O. Box 62
 Oak Ridge, TN 37831 !
 Telephone: (865) 576-8401
 Facsimile: (865) 576-5728
 E-Mail: reports@adonis.osti.gov
 Online ordering: http://www.osti.gov/bridge !
Available to the public from
 U.S. Department of Commerce
 National Technical Information Service
 5285 Port Royal Rd.
 Springfield, VA 22161 !
 Telephone: (800) 553-6847
 Facsimile: (703) 605-6900
 E-Mail: orders@ntis.fedworld.gov
 Online order: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online !!

! ! !!!

!2

mailto:reports@adonis.osti.gov
http://www.osti.gov/bridge
mailto:orders@ntis.fedworld.gov
http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

SAND2014-17970 
Unlimited Release  

Printed September 2014 !!
Seismic Attenuation Inversion with t* Using

tstarTomog !!
Leiph A. Preston  

Department of Geophysics and Atmospheric Sciences  
Sandia National Laboratories  

P.O. Box 5800 
Albuquerque, New Mexico 87185-MS0750 !!

Abstract !
Seismic attenuation is defined as the loss of the seismic wave amplitude as the wave
propagates excluding losses strictly due to geometric spreading. Information gleaned
from seismic waves can be utilized to solve for the attenuation properties of the earth.
One method of solving for earth attenuation properties is called t*. This report will
start by introducing the basic theory behind t* and delve into inverse theory as it
pertains to how the algorithm called tstarTomog inverts for attenuation properties
using t* observations. This report also describes how to use the tstarTomog package
to go from observed data to a 3-D model of attenuation structure in the earth. !!!

!3

!
ACKNOWLEDGMENTS !

The Source Physics Experiments (SPE) would not have been possible without the support of
many people from several organizations. The authors wish to express their gratitude to the
National Nuclear Security Administration, Defense Nuclear Nonproliferation Research and
Development (DNN R&D), and the SPE working group, a multi-institutional and
interdisciplinary group of scientists and engineers. This work was done by Sandia National
Laboratories under award number DE-AC52-06NA25946. !

!4

CONTENTS !

!

1. Introduction 9 ..

2. Attenuation and t* Theory 9 ..
2.1 t* Forward Model 9 ..
2.2 t* Inverse Problem 10 ...
2.3 Differential t* 10 ..
2.4 Station and Source Corrections 11 ...

3. The Discrete Forward Problem 11 ...
3.1 Model Discretization 11 ...
3.2 Ray Forward Problem 11 ..
3.3 Regularization 13 ..

3.3.1 Model Constraints 14 ..
3.3.2 Final Regularization 14 ..
3.3.3 Bounding Model Parameters 15 ...

3.4 Qs Modeling 15 ..

4. Inversion 15 ...
4.1 Convergence 16 ..

5. Building the Starting Model 16 ...
5.1 Software Environment and Setup 16 ..
5.2 Preparation for makeModel 17 ...

5.2.1 Absolute arrTab Format 17 ...
5.2.2 Differential arrTab Format 18 ...
5.2.3 Station Table Format 19 ..
5.2.4 Starting Q Model 19 ...
5.2.5 Seismic Velocity Models 21 ...

5.3 makeModel 21 ..

6 Running the Model 24 ..

7. Program Output 26 ..

8. Resolution and Error Analysis 29 ..
8.1 Resolution Tests 30 ...
8.2 Error Analysis 30 ..

9. References 31 ..

Appendix A: All Program Options 31 ...

Distribution 36..

!5

!
FIGURES !

Figure 1. tstarTomog input, algorithm and output flow 17 ...!

!6

NOMENCLATURE !
DOE Department of Energy
Q Seismic quality factor (unitless)
SNL Sandia National Laboratories
t* T-star !

!7

!

!8

1. INTRODUCTION
Seismic attenuation is defined as the loss of the seismic wave amplitude as the wave propagates
excluding losses strictly due to geometric spreading. Attenuation mechanisms fall into two broad
categories: intrinsic and scattering attenuation. Intrinsic attenuation is assumed to be micro-scale
losses due to conversion of seismic wave energy into heat. Scattering attenuation is due to
heterogeneities in the earth breaking up or scattering coherent single phases into multiple other
phases. Thus, scattering is thought of as a seismic energy conserving process; the seismic energy
is simply redistributed in space and time. In this brief, I will not distinguish between the two
major attenuation mechanisms, only focusing on the losses due to attenuation from any
mechanism. !

2. ATTENUATION AND t* THEORY
2.1 t* Forward Model
Attenuation can be estimated in several different ways. In this paper, I will use the relatively
simple measure called t*. All of the following derivations are based on equations from Lay and
Wallace (1995). If we assume that a far-field seismic phase at a given distance from the source
(!) has an amplitude of ! , then in a simple homogeneous but attenuating medium, the
amplitude, ! , at distance ! can be described by !

(1)

where ! is the measurement location, ! is frequency (Hz), ! is defined as the seismic quality

factor, and ! is the wave speed. It will be noticed that ! is the travel time. We can relax the

homogeneous medium assumption by making ! a function of position and ! the length of the
sinuous ray through a heterogenous medium. In a similar manner to how travel times are
computed along 3-D ray paths, t* is defined as !

(2)

integrated along the 3-D ray path. Here ! is a infinitesimal length along the ray path and ! is
the travel time associated with ! . Of course, this can be discretized into a finite sum !

 (3)

where ! is the ray length for a given cell, ! , ! is the P- or S-wave slowness (inverse of velocity,

!) and ! is the seismic loss factor (inverse of Q, !). Equation 3 is what is

actually used in the forward calculation portion of the algorithm due to its linearity in
parameters. !
Using equation 2 and placing it in Equation 1 for a heterogeneous medium, one obtains

r0 A0
A r

A(x) = A0
r
exp − π f

Qv
x

⎛
⎝⎜

⎞
⎠⎟

x f Q

v x
v

v r

t* = dl
Q(x)v(x)

= dt
Q(x)∫∫

dl dt
dl

t* ≈ lisiqi∑
li i si

si = 1
vi

qi qi = 1
Qi

!9

!

(4)

In practice, the amplitude ratio ! is typically measured at a specified frequency as spectral

ratios. For now and for simplicity, let’s assume that A is corrected for its distance r to obtain !

(5)

Now rearranging Equation 5 and taking the natural logarithm of both sides, one gets !

(6)

This defines the observed t* value. One provides the algorithm with ! and it internally

computes Equation 6 and utilizes t* throughout as its observables. !
2.2 t* Inverse Problem
Equation 3 defines the forward (predicted) calculation of t* based on a given model and
Equation 6 that of the observed t*. We are interested in finding the Q values as a function of
position that best describe the observed t* data. To accomplish this we need to find the optimal
change in Q from the starting model in order to make the residual t* (observed minus predicted)
zero or as close to zero as possible in an L2 norm sense. Partially differentiating Equation 3 with
respect to ! yields !

(7)

for a given ray path. Equation 7 is the sensitivity of changes in t* to changes in ! . ! is the
loss factor associated with segment i of the ray path and the product ! is simply the travel time
of that segment, i.e., how long it takes a seismic wave to traverse the segment. !
2.3 Differential t*
Equation 4 can be used directly if the source amplitude at a given distance is known. However,
this often is not the case. More often, one is comparing two different receiver locations for a

source of unknown amplitude. In this case, really what one is measuring is ! for locations 1

and 2. Taking ratios of Equation 4 for two different measurement locations 1 and 2 at the same
frequency one obtains: !

A(x) = A0
r
exp −π ft*()

A
A0

Ac = A0 exp −π ft*()

tobs
* = − 1

π f
ln Ac

A0

⎛
⎝⎜

⎞
⎠⎟

ln Ac
A0()

qi

δ t*

δqi
= lisi

qi qi
lisi

A2
A1

!10

(8)

With some manipulation, it yields

(9)

What one actually measures here is the first term on the right side of the equation. The second
term on the right side is the correction term for location 1 and 2 being at different distances from
the source. If they are at the same distance, this term vanishes. This latter term can also be
ignored if the two amplitudes have already been corrected for distance. Equation 9 says that the
amplitude ratio between two different receivers for the same source is just the difference between
the two independent t* calculations. Thus, the predicted t* for this case is simply the difference
between two calculations using Equation 3. The sensitivities are simply the difference in
sensitivities computed by Equation 7. !
2.4 Station and Source Corrections
Various emplacement conditions of sources can affect source output even with all other aspects
of the source being equivalent. Similarly, receiver sensitivity to input signal can be affected by
local emplacement conditions. In order to account for these unknown effects, we can augment
our solution to find static source and/or receiver biases as well. This is accomplished by adding
an unknown for each receiver and/or source. This unknown will absorb a portion of the total t*
for each station and/or source in the model. These can be regularized like all other variables in
the model. High regularization weights given to these parameters cause these corrections to be
smaller, whereas small regularization weights allow them to approach the mean t* for that
receiver or source. !

3. THE DISCRETE FORWARD PROBLEM
3.1 Model Discretization
The model space is discretized into rectangular elements of equal sizes. The X dimension is
divided into NX nodes with constant spacing dx. Similarly, the Y and Z dimensions are divided
into NY and NZ nodes with constant spacings dy and dz, respectively. dx, dy and dz do not need
to be co-equal. !
Both a seismic velocity model and a Q model must be input and discretized onto the same grid.
Internally, seismic velocity is converted to slowness, and Q is converted to the seismic loss
factor, as stated in Section 2 in the explanation of Equation 3. This is for computational
efficiency. !
3.2 Ray Forward Problem
We will be solving the linear system of equations expressed by !

 (10)

A2
A1

=
r1 exp −π ft2

*()
r2 exp −π ft1

*()

Δt* = t2
* − t1

* = − 1
π f

ln A2
A1

⎛
⎝⎜

⎞
⎠⎟
− 1
π f

ln r2
r1

⎛
⎝⎜

⎞
⎠⎟

Ax = b

!11

!
where A is the matrix containing sensitivities of the data to changes in the model parameters; x is
the column vector of unknown perturbations to the model parameters to be solved for; and b is
the column vector of residuals. The the new model, at iteration i+1, will be !
! !
We can apply the equations laid out in Section 2 to build up the A matrix. The A matrix contains
the sensitivities of the forward problem to the model parameters (unknowns). The A matrix will
have as many rows as there are data and as many columns as there are unknowns. Thus, if there
are no receiver or source corrections and only P-wave t*, A will have NX*NY*NZ columns. If
receiver and source corrections are also unknowns, then there will be NX*NY*NZ + nR + nS
columns, where nR is the number of receivers and nS is the number of sources. For a given
source-receiver pair, the seismic ray path in 3-D must be traced through a fixed seismic velocity
model (Vidale and Hole, 1995; Zelt, 1990). This model does not change during the entire
inversion process; thus, the ray paths remain the same across all iterations. Once the ray path is
known, we can use Equation 3 to compute the predicted t* based on the present Q model. If
receiver and source corrections are also part of the solution, then the ray-path-predicted t* is
augmented with the current receiver or source correction. !
To fill the A matrix we must first distribute the information from the 3-D ray path onto the
discretized model grid. This is accomplished by dividing the ray path into segments each
approximately 1/10 of the minimum node spacing and then distributing that segment’s sensitivity
(Equation 7) in a trilinear manner to that segment’s surrounding 8 grid nodes. All the segments
in a given ray path are summed; thus, grid nodes surrounding the ray path in 3-D space
accumulate the sensitivities along the ray path, while grid nodes outside the nearest neighbors of
the ray path have zero sensitivity. Therefore, one row of the A matrix will contain terms of the
form of Equation 7 at columns corresponding to grid nodes that the ray path “hit” and zeros at
the grid nodes not “hit”. Additionally, if receiver and source corrections are also solved for then
the row of the A matrix will also contain a 1.0 in the columns corresponding to this data point’s
receiver and source, with zeros in all other source and receiver columns. A is therefore sparse,
being mostly zeros. The general form of A is then !
!

!
where ! is the ray path portion of the matrix (NX*NY*NZ columns), ! is the receiver
correction portion (nR columns), and ! is the source correction portion (nS columns).
Corresponding to this is the b column vector, which would have an entry for a row i as: !
!

!

mi+1 =mi + x

A = Λ DR DS
⎡
⎣

⎤
⎦

Λ DR

DS

bi = l js jqj
j=path
∑ + tRi

* + tSi
*

!12

For differential t*, a row of A and b are built up by differencing two different ray paths which
may or may not share common sources or receivers. For example, let’s assume that the
amplitude ratio is the ratio of the amplitudes of source 1S, receiver 1R to source 2S, receiver 2R.
In this case, we can break up the problem into two parts that are individually identical to the
standard (non-differential) case. First, a temporary A row, called A1, can be built as in the
preceding paragraph using the ray from source 1S to 1R. Also, a temporary b (call it b1) can also
be constructed as stated above for this ray. Similarly, another temporary A row, called A2, can be
build from the ray 2S to 2R and another temporary b, called b2, can be computed. The final,
differential A row will then be A1-A2 and final b will be b1-b2. !
3.3 Regularization
Given the uneven distribution of ray paths from the data, some grid nodes will be hit multiple
times by different data points, whereas others will not be hit by any data points at all. This will
give rise to some portions of the model space being overdetermined while other parts are
underdetermined. One method of handling this problem is by using regularization.
Regularization serves to both bring some determinism to those nodes unhit by data and to control
the solution such that poor or bad data do not overly influence the solution. The regularization
matrix is called L. L will have the same number of columns as A, but the number of rows will be
NX*NY*NZ + nR + nS, if P-wave t* is used with receiver and source correction terms.
Regularization of the model portion of L is accomplished by imposing ansiotropic Laplacian
smoothing to the Q model. The second order accurate discrete Laplacian operator is applied to
the model, with a different, user-controllable weight being given to the vertical part of the
operator compared to the horizontal portions. Each row corresponds to a different point in the 3-
D grid acting as the pivot point for the Lapacian operator and will contain 7 entries. If the pivot
point in the grid is at point x, y, z, then the entires will be: !
!

!
where ! is the anisotropic vertical smoothing parameter. The corresponding entry to the
regularization portion of the b column vector, bL, is !
!
where LSm is the Laplacian portion of the regularization matrix and m is the current Q model.
This enforces the idea that we want a smooth Q model, not smooth perturbations to the Q model. !
If one notices, the above equation uses the Laplacian of the model, which, in actuality, is 1/Q
(the loss factor), not Q itself. Perhaps, however, one does not want the model to be smooth in 1/
Q, but smooth in Q, or perhaps even one would want smoothness in terms of relative changes in
Q (i.e., !). When 1/Q is the basis for smoothness, then high Q regions can appear very

Lx+1,y,z = Lx−1,y,z = Lx,y+1,z = Lx,y−1,z = 1
Lx,y,z+1 = Lx,y,z−1 = ζ
Lx,y,z = −4 − 2ζ

ζ

bLSm = −LSmm

ΔQ /Q

!13

rough, while low Q regions are much smoother; when Q is the basis of smoothness, then just the
opposite situation would be seen; when relative Q is the basis of smoothness, then both low and
high Q regions will have approximately the same apparent roughness. The default is smoothness
based on 1/Q. To use Q as the basis, then the Laplacian portion of the regularization matrix must
be scaled by Q2; which means that each row is scaled by the square of the current value of the Q
model for that row’s pivot point. To use relative Q as a basis for smoothness, the Laplacian must
be scaled by Q, making the Laplacian a relative scale independent of the size of Q at each point. !
The receiver and source portions of the regularization matrix are simple. These are simply the
identity matrix within their respective subsections of L. The bL for these portions are the
negative of their current values: we desire these parameters to be small, not just the
perturbations. !
The Laplacian, receiver correction, and source correction portions of the regularization matrix
can be weighted independently from each other. These weights control how strongly the
regularization affects the solution. A larger regularization weight on the smoothing portion will
make for a smoother model that doesn’t fit the data as well, in general, than a lower weight.
Thus, there is an art and science to determining the proper regularization weights to apply. This
is somewhat subjective, based on the data quality in conjunction with modeler expectations and
biases. !
3.3.1 Model Constraints
A further way to control the model is via model parameter constraints, which will attempt to
keep model Q values close to the provided values. These can either be from previously known
or estimated Q values or simply based on a priori beliefs. These a priori Q model values can be
included in the inversion with various weights which control how closely the inversion will
match these input values. High weights will force the model to strictly match the values,
whereas lower weights will allow deviations from these values. Note that these weights are
independent of the overall regularization weight, ! . !
3.3.2 Final Regularization
Combining the above regularization matrices into a final form, L, gives !

!

where ! is the Laplacian smoothing portion of the regularization, ! is the receiver
correction portion, ! is the source correction portion, and C is the model constraint portion.
The three columns shown in L are, from left to right, the NX*NY*NZ columns of the Q model,

λ

L =

LSm 0 0
0 αHR 0
0 0 βHS

γ
λ C 0 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

LSm HR

HS

!14

the nR columns of the receiver correction terms, and the nS source correction columns. The
scalars ! and ! are the independent weights given to the receiver and source correction portions
of the regularization. ! is a diagonal matrix with entries giving the weights of the corresponding
constraint values, and ! is the overall regularization weight (discussed in Section 4). The full L
and bL equations are then !

(11)

!
where ! is the current model and ! are a priori values for the model and ! and ! are vectors
containing the current values of the receiver and source correction values, respectively. !
3.3.3 Bounding Model Parameters
Another means of controlling the solution is via model parameter constraints. Maximum and
minimum allowable values for Q can be imposed as a function of depth, if desired. These
constraints are directly incorporated into the matrix inversion step (Bierlaire, 1991) so that a self-
consistent solution results, bounded by these constraints. !
3.4 Qs Modeling
All the previous discussion assumed only P-wave t* was being utilized. However, S-wave t* can
also be used. A separate 3-D grid of Qs is also constructed in this case. A seismic shear wave
velocity model must be included when Qs is desired. Exactly the same procedures are utilized
for S-wave t* as for P-wave t*. Separate receiver and source corrections for S-wave t* will also
be made if requested. The number of columns is doubled when using both P- and S-wave t*. In
addition separate regularization is used. !

4. INVERSION
The system in Equation 10 is constructed by augmenting the data A and b with the regularization
L and bL (Equation 11) to give a final system given by, !
!

!
where w is a diagonal matrix with entries giving the weights of each of the data points. These
weights would typically be reciprocals of estimated standard error estimates. ! is the overall
regularization weight given to the entire L matrix. This system is passed to the CGLS (Paige and
Saunders, 1982) algorithm to determine x.

α β
γ
λ

LSm 0 0
0 αHR 0
0 0 βHS

γ
λ C 0 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

x =

−LSmmi

−αhR
−βhS

γ
λ mi −mC()

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

mi mC hR hS

wA
λL

⎡

⎣
⎢

⎤

⎦
⎥ x =

wb
λbL

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

λ

!15

!
Since the velocity model does not change, the ray paths do not change, and the problem is
completely linear. Thus, it should converge in one iteration. If a second iteration were
attempted, then the perturbations should theoretically be zero. However, a couple of things can
alter this simple picture. Although numerical errors will cause non-zero second iteration
perturbations, based on experience, these perturbations are quite small relative to the model size.
True non-linearity, however, results if anything but the default smoothness based on 1/Q is used.
This is because now the value of the Laplacian regularization portion of L is based on the Q-
model, instead of being independent of it. !
Because of this possible non-linearity, the solution vector, x, output from the CGLS algorithm
may not actually be the “best” solution. In fact, it could actually be a worse fit than the prior
iteration’s model. To explore this possibility we assume that the direction of x is correct, but that
the magnitude of x may be too large. Thus, the code progressively halves the solution magnitude
until the minimum variance is found. The solution vector at this minimum variance is the one
used to update the prior model. !
4.1 Convergence
For a non-linear model, some set of criteria must be met before one says that the solution has
been obtained to sufficient accuracy. Several different criteria are available to the user to control
this exit condition. Convergence criteria include maximum absolute change in the model,
maximum relative change in the model, maximum L2 norm size for the model perturbation, and
maximum change in total model variance between iterations. All criteria must be met for
convergence. A maximum number of iterations can also be set that will stop the inversion
procedure irregardless of the other criteria. See the Appendix for flags that control convergence
(-s family of flags) !

5. BUILDING THE STARTING MODEL
5.1 Software Environment and Setup
The tstarTomog package is a collection of C and C++ source files and includes two main
programs: makeModel and tstarTomog. As such, to compile these programs a compiler capable
of compiling these languages with openMP support is required. A netcdf 3+ library must also be
on your library path. !
If you have executables of makeModel and tstarTomog, then the netcdf requirement depends on
whether the netcdf library was statically linked internally to the executable. If it was bundled as
a static internal library, then the netcdf library need not be on the machine. In all cases, it is
required that standard C, C++, and openMP libraries reside on your runtime library path. !
The next four sections will describe the basic elements required by makeModel to run as well as
some of the most common command line argument flags used to control its operation. Figure 1
demonstrates the overall flow of raw data and inputs into makeModel and tstarTomog through
output.

!16

!
5.2 Preparation for makeModel
As mentioned above the actual input data are ! . The first step is to build an ‘arrTab’ file.

This file is a flat ASCII text file with each line representing one data point. Each line contains all
relevant information concerning that data point including source and receiver information, the
data value itself, estimated error in the data value and data type. There are two varieties of
arrTab files: one for absolute t* and another for differential t*. The absolute arrTab is completely
self contained in that it does not require other files to complete its definition. The differential
arrTab file requires a separate station table file to complete its definition. !
5.2.1 Absolute arrTab Format
The format for an absolute t* arrTab file is: !
evNa evLat evLon evDep stNa stLat stLon stEl freq data edata type !
where, !
evNa: unique event identifier name

ln Ac
A0()

!17

Raw Data

arrTab fileQ Model (1-D
or 3-D)

Seismic
Velocity Model
(1-D or 3-D)

Other Files
(optional):
Station table,
topography

Command
Line Input

makeModel:
builds the
starting model
file

Starting Model
File

Q Model
Bounds File
(optional)

Command
Line Input

tstarTomog: inverts data for
optimal Q Model subject to
regularization and constraints

Output Q
Model

Figure 1: Overview chart showing flow of input, algorithms and output for the tstarTomog
suite, which includes the bold face algorithms makeModel and tstarTomog.

evLat: event latitude
evLon: event longitude
evDep: depth (km) of the event relative to sea level. Note that this will be negative for events

above sea level.
stNa: unique station identifier name (limited to 10 characters)
stLat: station latitude
stLon: station longitude
stEl: station elevation (km) relative to sea level. Note this has the opposite sign compared to

evDep.
freq: frequency (Hz) where the data is measured

data: ! at the specified frequency. A can either be corrected or uncorrected for distance.

edata: estimated error in the data in data units
type: the type of the data. This can either be ‘P’ for P-wave t* or ‘S’ for S-wave t* !
Note that flags given to makeModel can change the interpretation of those fields with Lat, Lon,
and Dep. See below for detail. !
5.2.2 Differential arrTab Format
The format for a differential t* arrTab file is: !
st1 st2 ev1 ev1Lat ev1Lon ev1Dep ev2 ev2Lat ev2Lon ev2Dep freq data
edata type !
where, !
st1: unique station identifier name (limited to 10 characters) for the reference data
st2: unique station identifier name (limited to 10 characters) for the second data
ev1: unique event identifier name for the reference data
ev1Lat: event 1 latitude
ev1Lon: event 1 longitude
ev1Dep: event 1 depth (km) relative to sea level. Note that this will be negative for events above

sea level.
ev2: unique event identifier name for the second data
ev2Lat: event 2 latitude
ev2Lon: event 2 longitude
ev2Dep: event 2 depth (km) relative to sea level. Note that this will be negative for events above

sea level.
freq: frequency (Hz) where the data is measured

data: ! at the specified frequency for amplitudes of event 2, station 2 divided by

amplitudes of event 1, station 1.
edata: estimated error in the data in data units

ln A
A0()

ln A2
A1()

!18

type: the type of data. This can either be ‘P’ for P-wave t* or ‘S’ for S-wave t* !
Note that flags given to makeModel can change the interpretation of those fields with Lat, Lon,
and Dep. See below for detail. !
5.2.3 Station Table Format
When a differential arrTab file is given, a station table file must also be provided. This is a flat
ASCII text file with a line for each station. It has the following format: !
stName stLat stLon stElev !
where, !
stName: unique station identifier name (limited to 10 characters)
stLat: station latitude
stLon: station longitude
stElev: station elevation (km) relative to sea level !
Note that flags given to makeModel can change the interpretation of those fields with Lat, Lon,
and Dep. See below for detail. !
5.2.4 Starting Q Model
There are several options available for specifying the starting Q model. Options are 1-D
homogeneous layers, 1-D gradient layers or full 3-D Q models. Both 1-D model variants are flat
ASCII text files. The full 3-D model option uses a binary netCDF file format. !
The 1-D homogenous layer file format contains a line for each layer and defines the top of that
layer. The last line in the file contains the properties for the halfspace from that depth to infinite
depth. The format is: !
depth [Vp] Qp !
where, !
depth: Depth (km) to the top of the layer relative to sea level. Note that depths above sea level

will be negative.
Vp: optional P-wave phase speed (km/s) for this layer
Qp: P-wave Q for this layer !
The 1-D gradient layer file format is similar to that of the 1-D homogeneous case: !
depth [Vp VpGrad] Qp QpGrad !

!19

where, !
depth: Depth (km) to the top of the layer relative to sea level. Note that depths above sea level

will be negative
Vp: optional P-wave phase speed (km/s) at the top of the layer.
VpGrad: if Vp is given, then this is required, otherwise it should not be given. This is the P-

wave phase speed gradient (km/s/km) in depth. A positive gradient means that it increases
with depth.

Qp: P-wave Q at the top of the layer
QpGrad: The P-wave Q gradient (1/km) in depth. A positive gradient means that it increases

with depth. !
Note that flags given to makeModel can change the interpretation of those fields with Depth.
See below for detail. !
The 3-D Q model input requires a netCDF format file (http://www.unidata.ucar.edu/software/
netcdf/). Libraries and routines for reading and writing netCDF files in a variety of
programming and scripting languages, including C, C++ and Matlab, are available through the
above website. A netCDF file is a self-contained unit that defines dimensions, variables and
attributes within a single file that is machine independent. Multiple variables may be contained
within a single file and all the dimensions associated with those variables are contained within
that same file. !
Probably the easiest way to obtain a netCDF model is by using an existing model file output
from makeModel or tstarTomog. One can always start off by using makeModel with a 1-D
model to get an initial model file and then replace the output model by the desired 3-D model.
The netCDF model requires several dimensions and variables to be defined. The required
dimensions are: !
NX: number of nodes in the X direction
NY: number of nodes in the Y direction
NZ: number of nodes in the Z direction
numCoord: 3 (always) !
Along with these variables: !
increments [numCoord]: float: array specifying [dx dy dz], i.e., the node spacings
x [NX]: float: array of the local x-axis. In Matlab format it will be: 0:dx:(NX-1)*dx
y [NY]: float: same as above, but for y
z [NZ]: float: same as above, but for z
xAxis [NX, numCoord]: float: 2-D array with the first column the same as ‘x’ above and the

other two columns zeros

!20

http://www.unidata.ucar.edu/software/netcdf/

yAxis [NY, numCoord]: float: 2-D array with the second column the same as ‘y’ above and the
rest zeros

zAxis [NZ, numCoord]: float: 2-D array with the third column the same as ‘z’ above and the rest
zeros

qp [NZ, NY, NX]: float: 3-D array of Qp. The z-axis point positive down (depth), y-axis positive
north, and x-axis positive east. The first data point is at the top, southwest corner of the
model. x increases fastest, then y, finally z. See ‘origin’ below for the absolute reference
frame.

qs [NZ, NY, NZ]: float: optional 3-D array of Qs. Otherwise the same as ‘qp’
origin [numCoord]: double: array specifying [lat0 lon0 z0]. This gives the absolute location of

the top, southwest corner of the model. z0 is depth (km) relative to sea level, so negative z0
is above sea level. !

5.2.5 Seismic Velocity Models
A Vp and, if Qs is requested, Vs model is required. The Vp model can be given as part of the 1-
D Q models as described above. A 3-D Vp (and Vs) model can also be given and, like for the 3-
D Q models, require a netCDF file format. This can most easily be done by using an existing
seismic velocity model as output from tomog (seismic velocity inversion algorithm; Preston,
2003). The netCDF file format for Vp (and Vs) is very similar to that of the 3-D Q model as
described above. The only difference is that the variable(s) below must be included: !
vp [NZ, NY, NX]: float: 3-D array of Vp (km/s). This array is laid out the same as ‘qp’ above
vs [NZ, NY, NX]: float: optional 3-D array of Vs (km/s). Same as above. !
These variables can be included in the same file as ‘qp’ (and ‘qs’) or they can be given in a
different file. Note that if they are given in a different file that all of the dimensions listed for the
3-D Q model along with all the variables (except ‘qp’ and ‘qs’) must be in this file. Also note,
that the model type given for Q can be different than that for Vp, meaning that a 1-D model can
be used for Q, while a 3-D model is used for Vp, or vice versa. !
5.3 makeModel
The program makeModel reads in all input files and flags and produces a single output netCDF
model file, which can be read by tstarTomog. These are the flags currently supported by
makeModel: !
-c cdfFile: model to create (req)
-s staTabFile: file containing station table
-z zone: utm zone number for model
-f[a|d] fixfile: fixed arrival table (a), or differential time table (d) (at least one is req)
-l dx dy dz: x, y, z increments (required if -v3 not given, otherwise ignored)
-i dh: travel time grid increment [smallest of dx, dy, dz]
-la latmin latmax: limits of lat (or Y) for model [determined by stations and events]
-lo lonmin lonmax: limits of lon (or X) for model [determined by stations and events]

!21

-m model.cdf: read data from file model.cdf. The following options apply to this model until
another -m

-mo: read observations from this file [no]
-mT: read topography from this file [no]
-mw: extra weight applied to all the picks in this file (multiplied) [1.0]
-mx: do NOT read picks from this file. Default is to read picks from the file
-n minPh: minimum number of amp picks for an event [1]
-nw : only count alive picks in number of picks to compare against above [all picks]
-o obsFile: observation file with 'lon lat depth qp weight' [none]
-or lon0 lat0 z0: manually set the coordinate origin (or x0,y0,z0)(SW top of model)
-oz[s] qp weight: set observation on bottom-most layer of model to qp with weight [none] [s]

does the same except for S velocities
-oz0 qp weight: set observation on top-most layer of the model to qp with weight [none]
-pm: assume input units on the most recently specified pick file is meters
-po lon0 lat0: use this as the origin lon/lat for the most recently specified pick file. This

automatically assumes that the file is in X-Y coordinates.
-ps psrat: set the Qp to Qs ratio. If this flag is set and no Qs-model is given, then this will be

used to make an Qs-model from the Qp-model. If an Qs-model is given the parameter is
ignored unless the -sv flag is also given

-pz: assume that arrTab and diff arrTab events Z is elevation instead of default depth
-sv: force a conversion from the Qp-model to Qs-model even if an Qs-model is given
-tg topoGridFileName: gridFloat format topographic data from USGS seamless server [none]
One of the following is required (both a Q and Vp model are required):
 -v[1] 1dmodFile: file containing 1d model params with 'depth [vp] qp' (km/s)
 -vg 1dgradmodfile: file containing 1d gradient params with 'depth [vp gradient] qp

gradient' (km/s/km)
 -v3v cdfFile: cdf file containing a 3d velocity model to use. nx, ny, nz, dx, dy, dz determined

from file
 -v3q cdfFile: cdf file containing a 3d Q model to use. nx, ny, nz, dx, dy, dz determined from file
-vL: use the local data to determine nx, ny, nz and origin even when -v3* is given.
-vz: assume files for -v[1] and -vg flags are 'elevation ...'. Must be given before -v* flags.
-xs sta1 sta2 ... staN: list of station names to NOT use
-xp pf1 pf2 ... pfN: list of pickFile names to NOT use
-xP: do NOT use P picks
-xS: do NOT use S picks
-xy: assume all input following this option is in X-Y coordinates, not lat/lon. This option affects

the -s, -e[a|d], -f[a|d], -la, -lo, -or, -o, -x[a|d] flags.
-uam: assume all units on the command line or in all files are in meters. Applies to all options

and files following -uam. Equivalent to -um -up -uv
-uaz: assume all input is in elevation instead of depth both in command line options and files.

Applies to all options and files following -uaz. Equivalent to -uz -pz -vz

!22

-um: assume all input option units for distance are in meters instead of kilometers. Options that
are affected: -l, -i, -la, -lo, -or, -o, -zm, -zn, -zm. Applies to all options following the -um
flag.

-uk: assume all input option units for distance are in kilometers (default). Options that are
affected: -l, -i, -la, -lo, -or, -o, -zm, -zn, -zm. Applies to all options following the -uk flag.

-up: assume all arrTab, diff arrTab, obs and station files following use meters instead of km. This
can be used in lieu of -pm flags following each file. Note that the -s file is processed at the
end.

-uv: assume velocity models given by -v[1] or -vg have depth in meters instead of default km.
Velocity is assumed to be m/s and the velocity gradient is m/s/m. Must be given before -v
flags.

-uz: assume -zm and/or -zn flag specify ELEVATION instead of depth. Must be given before -
zm, -zn

Note that -um and -uk can be utilized multiple times in the command line to specify the units in
one or more of the listed flags until another -um or -uk is encountered. Default is -uk.

-zm maxZ: maximum DEPTH of model (below sea level) [determined by events]
-zn [minZ]: do not use the zmin from the model (-v3 option) but calculate it anew. If minZ is

provided then use this as the minimum DEPTH of the model
-z0 baseElev: use this elevation as the zero depth reference [0.0] !
In the above listing, those flags that are required in all runs say ‘(req)’ at the end of the flag
description. The default value (if any) is provided in brackets at the end of the description. As
mentioned above when describing the file formats, several of these flags can change the
interpretation of the fields of the input text files. The file format descriptions give the default
interpretation. The flags above can be used to change the interpretation of all depth fields to be
that of elevation so that the sign of everything is the same. In addition, instead of latitudes and
longitudes being the absolute location units, XY coordinates (such as UTM) can be given
instead. When XY is specified, the ‘Lat’ fields become interpreted as ‘X’, while ‘Lon’ fields
become ‘Y’. Also, instead of km and km/s being the default units, all lengths can be interpreted
as meters and velocities as m/s. !
As an example, here is a call to makeModel: !
makeModel -c tstarTest.cdf -s stationTab.txt -fd tstarTest.arrTab
-l .001 .001 .001 -i .001 -v q1d.txt -v3v vp3dModel.cdf -vL -z0 0
-zn -1.5 -zm -1.4 -oz 50 1	!
In this call (all on a single line), we will be creating a model file called tstarTest.cdf using a
differential t* arrTab file tstarTest.arrTab with a station table stationTab.txt. We want the node
spacing to be .001 km (1 m) in all three dimensions and the increment for the travel time grid to
be .001 km (1 m). Use a 1-D homogeneous layered Q model from file q1d.txt and a fully 3-D
Vp model from file vp3dModel.cdf. We want the locations of the sources and receivers of the
data to determine the extents of the model instead of using the 3-D Vp model extents. Clearly

!23

specify we want the zero depth reference to be sea level (generally recommended to avoid
confusing the meaning of other input depths/elevations). We want the top of the model to be at a
depth of -1.5 km (1500 m elevation) and the bottom of the model to be at a depth of -1.4 km
(1400 m elevation) for a total model depth extent of 100 m. We also specify that we want the Q
at the bottom of the model to be constrained to a value of 50 with a weight of 1.0. !
If makeModel fails or runs into a problem, it will often give an explanation plus print a list of the
flags. Common mistakes are swapping latitudes and longitudes and confusing depths and
elevation fields. Also, make sure that the arrTab files have the proper number of columns and
that all lines are complete. !

6 RUNNING THE MODEL
Once a starting model is developed by makeModel, one is ready to perform an inversion with
tstarTomog. Here we will describe only the most common flags used to control its operation.
The appendix contains the full list of options. !
modelName.cdf: The starting model name is given immediately following the executable name

without any flags. This model file can either be one produced by makeModel or it can be the
output from a previous tstarTomog run. (required) !

-m modelOut: modelOut gives the base model name for this run. All output files associated with
this run will begin with this prefix and will be placed, by default, into a directory called
data in the current working directory that should already exist before tstarTomog is
executed. Output model files will use this prefix followed by a two digit number starting
from 00 and incrementing each major iteration, followed by a .cdf suffix. The zeroth
iteration (output from starting model forward problem) is model 00. The model following
the first inversion step is model 01. (required) !

-n N: This flag specifies how many threads it should use. You get a nearly perfect speedup for
the forward portion of the problem, but only a log(N) speedup for the CGLS inversion step.
(required) !

-f: Specifies that the 00 model should be written out. This will give you the starting predicted t*
based on the starting model. Default is to only write out major iterations starting with the 01
model. !

-fr [vpModel.cdf]: This flag indicates where it should read the Vp (and Vs) model from.
vpModel.cdf is optional. If not provided, then the variable ‘vp’ (and ‘vs’) is expected to be
found in modelName.cdf. This should be true of any starting model produced by
makeModel. If vpModel.cdf is provided then it will read variable ‘vp’ (and ‘vs’) from that
file instead. Only starting models produced by makeModel will contain both Q and Vp
information. If you are using the output from one run of tstarTomog as modelName.cdf for a

!24

new run, then ‘vp’ will not be present in that model. In this case, simply use the same
starting model file you used to run modelName.cdf for vpModel.cdf. (required) !

-dc: Perform distance corrections internally. This will use the length of the ray paths to
determine these corrections. Do not use this flag if you already corrected the amplitudes for
distance. Also, this flag is probably not that useful in its current form for absolute
amplitudes, since the implicit assumption here is that the reference source-receiver distance
is 1 km. For absolute data, you should distance correct the data yourself. I may update this
feature in the future to allow one to specify the reference distance instead of the implicit
assumption. !

-r ! : ! gives the scalar weight of the entire regularization portion of the algorithm (see above).
This weight is directly applied to the Laplacian smoothing portion of regularization, but it is
a multiplicative factor for the station and source correction regularization. Larger weights
increase model smoothness. (required) !

-cs ! : ! gives the scalar weight of the receiver correction portion of the algorithm (see above).
The actual weight applied is ! . Larger values of this combined weight force station
corrections to be smaller. !

-cxf ! : ! gives the scalar weight of the source correction portion of the algorithm (see above).
The actual weight applied is ! . Larger values of this combined weight force smaller
source terms. This flag will convert “fixed” (unchangeable) sources into sources that allow
source corrections. !

-rC [1, 2]: Select the type of Laplacian regularization. 1 is the relative Q based regularization; 2
is Q based regularization. See above for a more in depth discussion. Do not include this
option if you want the default 1/Q based regularization. !

-ra ! : ! gives the scalar anisotropic vertical smoothing weight. Values less than 1.0 make the
vertical direction rougher than XY. !

-i Dh: This provides the travel time grid node spacing. This does not have to match what was
given in makeModel. Typically this should be equal to half the minimum inversion grid node
spacing (-l flag to makeModel). It is also acceptable to have this equal to the minimum
inversion grid node spacing in many cases. Smaller values of this increase runtime for the
forward modeling portion by a factor of about 8 for each halving of Dh, but it also increases
ray path accuracy. !

-mp qpLimFile.txt: This flag sets up bound parameter inversion. The file is a flat ASCII text file
which gives the minimum and maximum allowed values of Q as a function of depth. The
format for each line is  

γ γ

α α
αλ

β β
βλ

ζ ζ

!25

 
depth minQ maxQ  
 
depth: depth to the top of the zone in km relative to sea level, so negative values are above
sea level.  
minQ: minimum Q value allowed in this zone  
maxQ: maximum Q value allowed in this zone  
 
A given line applies the bounds to all nodes that fall between its depth and the depth given on
the next line. The final line applies its bounds to all nodes deeper than it. !

An example command line for tstarTomog is: !
tstarTomog startingModel.cdf -m modelA -n 4 -dc -f -fr -cs 1 -cxf 1 -r
1e-5 -rC 1 -i .0005 -mp qpLim.txt -ra .25	!
This call will read the data and starting model from startingModel.cdf and use the prefix
“modelA” for all model output. We requested 4 threads and will be using internal distance
corrections. Write out the zeroth iteration. The seismic velocity model is found in
startingModel.cdf. We request station and source corrections with a weight of 1.0. The overall
regularization weight is set to 1e-5 and we request that relative Q be used as the basis for
smoothing regularization. The travel time grid node spacing is set to 0.0005 km. A Q model
bounds file is provided. Finally, a vertical anisotropic smoothing weight of 0.25 is applied. !
This model will run until the default convergence criteria are all met. Output will be placed in
the default “data” directory with a new output file being written at the end of each major
iteration. Diagnostic output is written to stderr. This output shows progress, RMS data misfits,
smoothness, RMS of station and source correction terms, and much more. At the end of each
major iteration, the complete variance history of all the iterations is summarized so that one can
glean information on how the model is converging. Also, the convergence criteria and current
values of these criteria for the current iteration are provided. Usually the final model iteration
directly before program exit is the best model; however, one should scan the variance history to
ensure that this is truly the case. tstarTomog will exit if the model is worse than the previous
iteration. !

7. PROGRAM OUTPUT
Output from tstarTomog consists of a series of netCDF files, one for each major iteration. As
mentioned at the end of the last section, usually the best model is the final output before exit, but
this should be checked using tstarTomog’s diagnostic output. !
The format for the netCDF output from tstarTomog is virtually identical to that of makeModel
except that tstarTomog does not write the seismic velocity variable(s) and tstarTomog writes out
raypath coverage data to the output file. This section will give the dimensions and variables

!26

defined for both program outputs. C/C++ and Matlab, along with most other common
programming languages, provide netCDF support so that one can read and display output. !
Dimensions:
numCoord: 3 (always)
NX: number of nodes in the X dimension
NY: number of nodes in the Y dimension
NZ: number of nodes in the Z dimension
numObservations: number Q points with constraints (only if constraints are provided)
numStations: number of unique stations
stationNameLen: 10 (always). This is maximum length for a station name.
numPickFiles: number of unique events
pickFileNameLen: 512 (always). This is maximum length for an event name.
numPicks: number of t* observations
numDtPicks: number of differential t* observations (only if there is at least 1) !
Variables:
increments [numCoord]: float: array specifying [dx dy dz], i.e., the node spacings
x [NX]: float: array of the local x-axis. In Matlab format it will be: 0:dx:(NX-1)*dx
y [NY]: float: same as above, but for y
z [NZ]: float: same as above, but for z
xAxis [NX, numCoord]: float: 2-D array with the first column the same as ‘x’ above and the

other two columns zeros
yAxis [NY, numCoord]: float: 2-D array with the second column the same as ‘y’ above and the

rest zeros
zAxis [NZ, numCoord]: float: 2-D array with the third column the same as ‘z’ above and the rest

zeros
qp [NZ, NY, NX]: float: 3-D array of Qp. The z-axis point positive down (depth), y-axis positive

north, and x-axis positive east. The first data point is at the top, southwest corner of the
model. x increases fastest, then y, finally z. See ‘origin’ below for the absolute reference
frame.

qs [NZ, NY, NZ]: float: optional 3-D array of Qs. Otherwise the same as ‘qp’
qpSensitivity [NZ, NY, NX]: float: 3-D array of weighted P-wave ray travel time per node. Each

element is simply the sum of the column of the A matrix corresponding to that point. This
gives an idea of the sensitivity of the model as a function of 3-D space. Zeros mean that no
ray “hit” that node. makeModel does not output this variable.

qsSensitivity [NZ, NY, NX]: float: 3-D array of weighted S-wave ray travel time per node. This
exactly corresponds to qpSensitivity. This will only be output if qs is given and there are S-
wave t* observations.

vp [NZ, NY, NX]: float: 3-D array of Vp (km/s). This array is laid out the same as ‘qp’ above.
tstarTomog does not output this variable.

vs [NZ, NY, NX]: float: optional 3-D array of Vs (km/s). Same as vp.

!27

origin [numCoord]: double: array specifying [lat0 lon0 z0]. This gives the absolute location of
the top, southwest corner of the model. z0 is depth (km) relative to sea level, so negative z0
is above sea level.

observationsX [numObservations]: float: array specifying the local model X coordinates for all
of the Q constraint points. This will only be present if numObservations exists.

observationsY [numObservations]: float: array specifying the local model Y coordinates for all
of the Q constraint points. This will only be present if numObservations exists.

observationsZ [numObservations]: float: array specifying the local model Z coordinates for all of
the Q constraint points. This will only be present if numObservations exists.

observationsVal [numObservations]: float: array specifying the Q constraint values for all of the
Q constraint points. This will only be present if numObservations exists.

observationsWeight [numObservations]: float: array specifying the weights for all of the Q
constraint points. This will only be present if numObservations exists.

observationsType [numObservations]: int: array specifying the type (0 for P-waves; 1 for S-
waves) for all of the Q constraint points. This will only be present if numObservations
exists.

stationName [numStations, stationNameLen]: char: 2-D array of the unique station names.
stationX [numStations]: float: array specifying the local model X coordinates for the stations.
stationY [numStations]: float: array specifying the local model Y coordinates for the stations.
stationZ [numStations]: float: array specifying the local model Z coordinates for the stations.
stationTp [numStations]: float: array specifying the P-wave station correction terms for the

stations. This will only be present if station corrections are requested.
stationTs [numStations]: float: array specifying the S-wave station correction terms for the

stations. This will only be present if station corrections are requested.
pickFileNames [numPickFiles, pickFileNameLen]: char: 2-D array of the unique event names.
pickFileX [numPickFiles]: float: array specifying the local model X coordinates for the events.
pickFileY [numPickFiles]: float: array specifying the local model Y coordinates for the events.
pickFileZ [numPickFiles]: float: array specifying the local model Z coordinates for the events.
pickFileT [numPickFiles]: float: array specifying the P-wave source correction terms for the

events.
pickFileTs [numPickFiles]: float: array specifying the S-wave source correction terms for the

events.
pickFileX0 [numPickFiles]: float: deprecated.
pickFileY0 [numPickFiles]: float: deprecated.
pickFileZ0 [numPickFiles]: float: deprecated.
pickFileT0 [numPickFiles]: float: deprecated.
pickFileRegWeight [numPickFiles]: float: deprecated.
pickFileRegZ [numPickFiles]: float: deprecated.
pickFileRegT [numPickFiles]: float: deprecated.
pickFileType [numPickFiles]: int: array specifying the type of the event. This is primarily for

internal use, but gives whether the event is from an earthquake (0), fixed source (1) or
explosion (2). Explosive types simply allow source corrections to be applied for otherwise
fixed sources.

!28

pickFileStartPickIndex [numPickFiles]: int: array that gives the starting index number (starting
at 0) for each event of data in arrays of length numPicks.

pickFileStopPickIndex [numPickFiles]: int: array that gives the last index number for each event
of data on arrays of length numPicks. This information is basically just for ease. This is
because pickFileStopPickIndex[i] = pickFileStartPickIndex[i+1] except for the last entry in
which pickFileStopPickIndex[last] = numPicks. In Matlab, for example, to get all the
observed t* values for event i, one would use pickObsTStar(pickFileStartPickIndex(i)
+1:pickFileStopPickIndex(i)).

pickName [numPicks, stationNameLen]: char: array of the station names associated with every
t* observation.

pickObsTStar [numPicks]: float: array of t* observations.
pickCalcTStar [numPicks]: float: array of predicted t*. Note that these will have entries of

-1000 for picks whose rays went out of bounds. These are not updated if a pick has been
thrown out.

pickFreq [numPicks]: float: frequencies of the t* observations.
pickWeight [numPicks]: float: weights applied to the data. Typically these are 1.0 unless a ray is

out of bounds or data have been downweighted or thrown out due to too large an error.
Downweighted, but still used picks will have weights between 0 and 1. Weights of 0 or
negative have been thrown out of the inversion and are not used.

pickType [numPicks]: int: array that indicates the type of t* observation. This can be P-wave
absolute (0), S-wave absolute (1), P-wave differential (4), S-wave differential (5).

pickETime [numPicks]: float: array of the estimated standard error of the data. These are simply
those input into makeModel when the data was first built.

dtPickOtherEventIndex [numDtPicks]: int: array of the indices into arrays of length
numPickFiles for the second event in a differential pair. This will not be present if there are
no differential picks in the data set.

dtPickOtherStatName [numDtPicks, stationNameLen]: char: array of the names for the second
station in a differential pair. This will not be present if there are no differential picks in the
data set. !

Attributes:
isFlat: int: This indicates whether the model assumes a flat earth geometry (1) or if it includes

spherical earth corrections (0).
history: char: This gives the command line call that produced this file. !
The dimensions of each variable is given in brackets after the name of the variable, followed by
the variable type (float, double, char, int). The variables are C-style in that all variables that refer
to indices are 0 based. Also, the layout in memory is such that the final dimension of a variable
is the one that varies the fastest. !

8. RESOLUTION AND ERROR ANALYSIS
Direct covariance analysis would be ideal but this involves the computation of ! , which is, in
general, not sparse. This can result in a very large filled matrix, which is extremely

ATA

!29

computationally burdensome for even relatively small realistic problems and intractable for large
problems. As such, we do not compute the direct covariance of the problem, but instead, use
model resolution and statistical jackknife tests to estimate the model error. !
8.1 Resolution Tests
A resolution test involves the imposition of a known pattern to the model and the attempted
recovery of that pattern. A common resolution test used in tomography is the checkerboard
resolution test. In this test, the final 3-D model is altered by multiplication of the 3-D Q values
by a regular pattern of 1+r and 1-r blocks that in 2-D looks like a checkerboard. The quantity r is
the amplitude or peak fractional change to the final model, with values of 0.05 and 0.10 typical.
This perturbed model is then used to calculate t* values at all the data points. These t* values
become the “observed data” of the resolution test. Gaussian distributed errors also can be added
to these t* values to more realistically represent actual error and variation in the data. The
inversion then proceeds as usual until it converges. The output of this converged model is called
the resolution model. In order to interpret the resolution of the model, one displays the ratio of
the resolution model to the original model. In a perfectly resolved model, this will show the
same regular pattern of 1+r and 1-r blocks that one input. In realistic scenarios, there will be
smearing across blocks, blocks with returned amplitudes either greater or smaller than the input
amplitudes, and regions with absolutely no recovery. !
tstarTomog has built-in options to create checkerboard test runs. Besides the block pattern
mentioned above, one can also choose a more smoothly varying checkerboard pattern based on
3-D sine functions. Both Qp and Qs can be tested. Errors can be added to the resolution t*
values. These options are controlled by several different -T flag variants. See Appendix A for a
list of these options and how they control the resolution tests. In order to test the resolution of a
given model, it is best to use as many of the same flags in the resolution tests as were used to
make that model. Especially important is the overall regularization weight (-r flag) and vertical
anisotropy regularization weight (-ra flag). You may exclude external Q model (a prior)
constraints from resolution tests (-rxn flag) or force the external constraint values to match those
of the perturbed model (-Tx flag), if desired. !
8.2 Error Analysis
Model parameter standard error is estimated via the statistical jackknife test (e.g., Wonnacott and
Wonnacott, 1985). For this test, a certain fraction (e.g., 10%) of the data is removed from the
data set and a full inversion is done on this subset. Another nine models are then run, each with a
different 10% of the data removed. This gives 10 models. These 10 models can then be
analyzed to estimate the standard errors. tstarTomog has limited capability for handling
jackknife tests directly. One flag, -j, basically turns off certain flags that would normally throw
out events that have too few data, etc. There are no flags in tstarTomog that will actually make
the 10 models with 10% of the data removed from each. These models must be made outside of
tstarTomog and each run independently. These 10 runs then need to analyzed by a program
outside of tstarTomog to actually give standard error estimates. Please see standard statistical
papers and books for the best jackknife test equations for your particular problem. From

!30

experience, I find that the equations given in Wonnacott and Wonnacott (1985) give reasonable
looking distributions of high and low standard errors, but that the values appear much too small. !

9. REFERENCES
Bierlaire, M., P.L. Thoint, and D. Tuyttens, On iterative algorithms for linear least squares

problems with bound constraints, Lin. Alg. and its Appl., 143, 111-143, 1991. !
Hole, J. and B. Zelt, 3-D finite-difference reflection traveltimes, Geoph. J. Int., 121 (2), 427-434,

1995. !
Lay, T. and T.C. Wallace, Modern Global Seismology, Academic Press, San Diego, 521 pp.,

1995. !
Paige, C. and M. Saunders, LSQR: An algorithm for sparse linear equations and sparse least

squares, ACM Trans. on Math. Soft., 8, 43-71, 1982. !
Preston, L.A., Simultaneous Inversion of 3D Velocity Structure, Hypocenter Locations, and

Reflector Geometry in Cascadia, Ph.D. Thesis, University of Washington Seattle, Seattle,
WA, 2003. !

Vidale, J., Finite-difference calculation of traveltimes in three dimensions, Geophysics, 55(5),
521-526, 1990. !

Wonnacott, R.J. and T.H. Wonnacott, Instrductory Statistics, John Wiley and Sons, New York,
649 pp., 1985. !!!

APPENDIX A: ALL PROGRAM OPTIONS
This appendix lists all the options available for tstarTomog. The most common options are given
above in the “Running tstarTomog” section (Section 6). Some of these options here could be
useful in some circumstances, but you should use many of them with caution. !
argument: model name--this must be a cdf file as described above. Includes a Qp and Qs

(optional) model and all the data to be used in the inversion. It may also include Vp (and Vs) !
-v [#]: Verbose option, followed by optional digit sets value of Verbose global to that value. This

allows varying levels of verbosity. Default value of Verbose is 1.
-n #: use multi-threaded OpenMP version with # threads.
-m name: Sets global ModelNameRoot. Each iteration is a derivation of this.
-d : decimate the input model by a factor of two. It will cover at least the same volume as the

original

!31

-di xyz : interpolate the model by a factor of two. This effectively un-does the effect of -d. To
get the same model size back as originally, you need to provide a three digit number, xyz, that
signifies whether the length of x, y and z are even or odd. a '1' means make it odd, a '2'
means even, so -di 122 would make nx's length odd and ny and nz lengths even.

-dT cdfFile: read topography from this model file. Useful with the -di option to get higher res
topo into the model

-i #: This determines the grid spacing for the travel time calculation grid. <2.0>.
-f: Write out zeroth iteration. Useful if you want calculated times for a different model than is

already in the file or just want calculated times for a starting model.
-fl 1 or 0: use/convert to a flat earth (1) or use/convert to a spherical earth approx (0). Only z is

affected by this approximation and will be valid out to several degrees distance. The output
model will have its global attribute 'isFlat' set to the value of -fl. <1>

-j [# [#]]: doing jackknife tests. Turns off testing for min number of live picks and all pick
tossing (exceeding standard devs, etc.) and does not allow bound inversions. If a number is
given, the slownesses will be multiplied by this factor before inversion begins. If solving for
Qp/Qs, Qp/Qs will be mult by #. If 2 numbers are given then the first applies to P and the
2nd to S or Qp/Qs. <1.0>

-bi #: number of allowed major iterations with an increase is misfit before bailing <1>
-cx[f] #: use this # for explosion time adjustment regularization. If 'f' is also given, then all fixed

type are converted to explosions. <10000>
-cs #: use this # for station correction regularization. If this option is not given, then no station

corrections will be solved for.
-mm cdffile: restart where you left off. The model name you give above should be the final

model of the previous iteration before CGLS inversion. The model given on this line should
be the one after the CGLS inversion. It compares the sizes and does what it normally would
right after exiting from the CGLS inversion.

-mp file: use this file to construct min and max allowable Qp values in the model as a function of
depth. Format is "depth(km) q_min q_max". All depths below the last given will use those
limits. All depths above the min depth will be given the limits for the shallowest layer. A
"-1" in either the min or max values for a depth will take the corresp default values < 1.5
8.0>

-ms file: use this file to constrain min and max allowable Qs values in the model. If Qp/Qs is
used or Qp/Qs reg is requested, the min and max values will apply to the Qp/Qs model.
Everything else is just like -mp. Defaults are:< .01 5 > for Qs and < 1.6 2.5 > for Qp/Qs.

-pr: reset all the negative pickweights to positive and any 0 weights to 1.
-pi: reset all pickweights<0 each iteration. This makes it calculate rays for all picks regardless of

whether they have been thrown out in a previous iteration.
-pw min max: sets the min and max data error allowed. Any pick with an edata > max will have

its pickweight adjusted such that pw/edata = 1/max, etc. Does not affect differential picks.
-pwr: reset all pick weights > 0 to 1.0 !
-e: The -e? family of flags control various aspects of how events are dealt with

!32

-es #: This sets the initial number of elements allocated in the A-matrix for each ray. If this is too
low then element and column arrays will need to be reallocated, if too big A will be very
inefficient in its space usage. Default is generally fine. <200>.

-en #: minimum number of live picks to keep an event <1>.
-ev n v: keep all picks regardless of residual for n full iterations and then throw out picks with

weighted residuals > v times the standard deviation for that event
-evr n v: keep all picks regardless of residual for n full iterations and then throw out picks with

residuals > v seconds
-evv n v: keep all events regardless of variance for n full iterations and then throw out events

with weighted standard deviations > v (unitless) !
-r: the -r? family of flags control various aspects of the regularization
-r[w] #:Sets the overall regularization weight. All other regularization weights are multiplied by

this number. <10000>
-rv regW regWMult: Use variable regularization weighting. regW is the starting regularization

weight, regWMult is between 0 and 1 and is applied to regW after each full iteration until the
reg weight given by the -r flag, ie. the -r flag gives the minimum reg weight

-rl #: Use distance weighting. The weight given an observation is multiplied by the length of the
ray times the number given. Note that this weight can never weight a pick > 1, so effectively
any ray less than the inverse of the # in length gets a weight of 1. To change the overall
weighting use -rlw in addition to this one.

-rlo: Only use distance weighting, i.e., the estimated pick error times are not used, only the
distance weighting weights picks. <FALSE>

-ra #: Sets the vertical regularization anisotropy. Numbers less than 1 allow more variability in
the z-dir. <0.1>

-ray #: Sets regularization Y anisotropy. Numbers >1 allow smoother models in the Y dimension
handy for quasi 2D models. <1.0>

-rz: Toggles the value of the ZeroEdge. This effects the behavior of the regularization at the
model edges. If ZeroEdge is true the perturbations are constrained to be zero at the edge. If
false the slope of the perturbation is set to zero for creeping, or the slope of the model is set
to zero for non-creeping solutions. <FALSE>.

-rc: Changes to creeping regularization by setting the Creep to TRUE. This means the
smoothness of individual perturbations is constrained to be zero. The converse means the
model is smoothed by setting b=-Lx. <FALSE>

-rx file: Use the following file as external Q constraints. The file is of the form:  
x y z qp weight

-rxn: Do NOT use any external constraints in the inversion. Any present will still be written to
the model output files, but will not be used. This may be helpful for testing the effects of the
constraints and for resolution (checkerboard) tests. <use external constraints>

-rf factor: relative amount that the Qs/QpQs model is smoothed relative to Qp. Default is 1.0/
sqrt(3). Negative values will seek a flat solution.

-rb: use QpQs regularization for Qs. This causes the program to solve for QpQs instead of Qs
values. Qs will be output. <use Qs directly>

!33

-rp file: Prints the ray path information to the filename following this flag. File is in the form
"station source" followed by lines of x y z. Will quit after one iteration.

-rS[ps] weight: use small perturbation regularization for Qp ('p' or none) or for Qs (or QpQs) ('s')
-rC #: # is either 1 or 2. If 1, then the regularization will be weighted such that smoothness will

be measured in terms of normalized local Q so the smoothness is related to (Q0-Q1)/Q0. This
means that, for example, any place that has a change of say 5% in Q will have the same
smoothness. If # is 2, then the regularization will be weighted such that smoothness will be
measured in terms of Q, i.e., proportional to Q0-Q1. This means that any place where the Q
difference is, for example, 10, the smoothness would be the same. The default behavior is
that the smoothness will be measured in terms of 1/Q0-1/Q1 (i.e., loss factors), so that, for
example, any 0.1 difference has the same smoothness. <use 1/Q for smoothness> !

-wd dirname: Set the location where most data files are placed. This directory must already
exist. <"data">. !

-s: The -s? family of flags controls the solver (Both the linear and the non-linear portions)
-sn #: Sets the value of the node error variable. This is the RMS of the perturbation vector for

the loss factor model (1/Q). Enter this number as the % mean error in Q per node allowed for
convergence. <10> (%)

-sN #: Set the value of the max node fractional change between iterations. <0.05> (5%)
-sxr #: Sets the value of the maximum fractional change in RMS allowed for convergence.

<0.05>
-sx #: Sets the maximum node change allowed for convergence in loss factor (1/Q) units.

<0.00175>
-sxc #: Sets maximum perturbation norm allowed for convergence <10>
-sp lim1 lim2: Sets downweighting for picks whose abs weighted error exceed certain limits. For

picks whose weighted error are less than lim1 standard deviations then use standard errors as
weights. If it falls between lim1 and lim2 standard deviations, then use a cosine taper to
downweight picks. Outside of lim2 are given zero weight but not removed so that they can
come back.

-sg #: Starting gamma value. Useful if want to start in the middle of a gamma run so you don't
have to do the whole iteration. This along with the -ss option allows you to start in the
middle of any iteration and thus can use times calculated on a previous run.

-ss #: Starting iteration value. Can be used with -sg. See -sg.
-si #: Sets the maximum number of non-linear iterations. <25>. !
-T testFile: create a resolution test file named "testFile.cdf"
-Tv vAmp [x0] xL [y0] yL [z0] zL: A Q model with sine checker-board pattern centered about vp

with fractional amplitude vAmp and wavelengths xL, yL, zL. x0, y0, and z0 are optional (but
if one is given, then all the others must be also) and shift the checkerboard pattern by X km
in the direction given. -T must be given as well. If xL, yL, or zL is <=0, then there will be no
functional dependence in that direction.

!34

-Tb vAmp [x0] xL [y0] yL [z0] zL: A Q model with box car checker-board pattern centered about
vp with fractional amplitude vAmp and wavelengths xL, yL, zL. x0, y0, and z0 are optional
(but if one is given, then all the others must be also) and shift the checkerboard pattern by X
km in the direction given. -T must be given as well. If xL, yL, or zL is <=0, then there will be
no functional dependence in that direction.

-Te[p|s] Err: Add gaussian distributed errors to calculated t*. The units are standard error units,
so they scale the pick standard errors. So if a pick had a standard error of 0.05 s and you
have the Err as 1.5, then the error used would be 0.075 s. This keeps the distribution of
standard errors the same. An optional 's' may be added to -Te to supply S-wave error times.
If these are not given, and S times are in the model, then the P errors will be used. 'p' may be
added to the end, but if none is added, then 'p' is assumed. You must use -Te for both P and S
errors if they exist, i.e. you can not mix -Te and -Tet.

-Ted[p|s] Err: Add gaussian distributed errors to differential t*. The units are standard error
units. An optional 's' may be added to -Te to supply S wave error times. If these are not
given, and S times are in the model, then the P errors will be used. 'p' may be added to the
end, but if none is added, then 'p' is assumed. Note that if this option is not provided and
there are differential data in the dataset, the default is 0.0 error even if -Te above is given.
Note: you cannot mix -Te and -Tet flags within one run.

-Tet[p|s] Err: Add gaussian distributed errors to calculated t*. The units are actual error times in
seconds, so .05 means the errors added to the times will have a gaussian distribution with a
standard deviation of .05 seconds. An optional 's' may be added to -Tet to supply S-wave
error times. If these are not given, and S times are in the model, then the P errors will be
used. 'p' may be added to the end, but if none is added, then 'p' is assumed. You must use -Tet
for both P and S errors if they exist, i.e. you can not mix -Te and -Tet.

-Tetd[p|s] Err: Add gaussian distributed errors to calculated differential t*. The units are actual
units (s). An optional 's' may be added to -Te to supply S wave error times. If these are not
given, and S times are in the model, then the P errors will be used. 'p' may be added to the
end, but if none is added, then 'p' is assumed. Note that if this option is not provided and
there are differential data in the dataset, the default is 0.0 error even if -Ted above is given.
Note: you cannot mix -Te and -Tet flags within one run.

-Tx: Forces any external constraints to match the values of the perturbed model. This overwrites
any external constraint values with values of the perturbed model.

-Tm: exit after the perturbed model times have been calculated instead of swapping velocities
and inverting. With this option, you could then manually replace the Q model with whatever
one you want instead of using the initial model

-Tp cdfFile: Use this model as the perturbed model (precludes -Tv, -Tb) !!!

!35

DISTRIBUTION !
1 MS0750 Leiph Preston 6913 (electronic copy)
1 MS0750 Robert E. Abbott 6913 (electronic copy)
1 MS0750 Hunter Knox 6913 (electronic copy) !
1 MS0899 Technical Library 9536 (electronic copy) !!

!36

!!!!!

!37

!!
!

